Inactivation of the somatosensory cortex prevents paroxysmal oscillations in cortical and related thalamic neurons in a genetic model of absence epilepsy.
نویسندگان
چکیده
Absence seizures consist of bilateral spike-and-wave discharges (SWDs) occurring over widespread cortical and thalamic regions. In genetic models of absence epilepsy, recent in vivo investigations indicate that SWDs emerge first in the facial somatosensory cortex and then propagate via the corticothalamocortical loop. The specific involvement of this cortical region in ictogenic processes remained to be established and the participation of its related thalamocortical system in seizure initiation remained unclear. Here, using electrocorticographic (ECoG) and intracellular recordings in vivo from cortex and thalamus in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS), we obtained novel evidence for the cortical focus theory of absence epilepsy. We report that blockade of action potential discharge and synaptic activities in facial somatosensory cortical neurons, by topical application of tetrodotoxin, prevents the occurrence of paroxysmal activities in local and distant cortical neurons and ECoGs, as well as in thalamocortical neurons in register with the somatosensory cortex. In contrast, pharmacological inhibition of a remote motor cortical region or of the related thalamic nuclei did not suppress ictal activities in the somatosensory cortex. This study demonstrates that SWDs in GAERS have a focal origin within the facial somatosensory cortex, which is sufficient and necessary to generate ictal activities.
منابع مشابه
Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats.
Absence seizures are the most pure form of generalized epilepsy. They are characterized in the electroencephalogram by widespread bilaterally synchronous spike-wave discharges (SWDs), which are the reflections of highly synchronized oscillations in thalamocortical networks. To reveal network mechanisms responsible for the initiation and generalization of the discharges, we studied the interrela...
متن کاملDeep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures.
Typical absence has long been considered as the prototypic form of generalized nonconvulsive epileptic seizures. Recent investigations in patients and animal models suggest that absence seizures could originate from restricted regions of the cerebral cortex. However, the cellular and local network processes of seizure initiation remain unknown. Here, we show that absence seizures in Genetic Abs...
متن کاملPeri-ictal network dynamics of spike-wave discharges: phase and spectral characteristics.
PURPOSE The brain is a highly interconnected neuronal assembly in which network analyses can greatly enlarge our knowledge on seizure generation. The cortico-thalamo-cortical network is the brain-network of interest in absence epilepsy. Here, network synchronization is assessed in a genetic absence model during 5 s long pre-ictal->ictal transition periods. METHOD 16 male WAG/Rij rats were equ...
متن کاملResponses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملPersistence of Cortical Sensory Processing during Absence Seizures in Human and an Animal Model: Evidence from EEG and Intracellular Recordings
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2009